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Large-amplitude Benard convection in a rotating fluid 

By GEORGE VERONIS 
Department of Geology, Tale University, New Haven, Connecticut 

(Received 16 June 1967) 

Linear stability theory of BBnard convection in a rotating fluid (Chandrasekhar 
1961) has shown that fluids with large ( 1) Prandtl number, cr, exhibit behaviour 
markedly different from that of fluids with CT < 1.  This difference in behaviour 
extends also into the finite-amplitude range (Veronis 1959,19661). In  this paper 
we report a numerical study of two-dimensional BBnard convection in a rotating 
fluid confined between free boundaries, with cr = 6-8 and cr = 0.2 for the range of 
Taylor number 0 < Tz < lo5 and for Rayleigh numbers, R, extending an order 
of magnitude from the critical value of linear stability theory. The behaviour 
of water (a = 6.8) is dominated by the rotational constraint even for relatively 
moderate values ( N 103) o f P .  A study of the resultant velocity and temperature 
fields shows how rotation controls the system, with the principal behaviour 
reflected by the thermal wind balance ; i.e. the horizontal temperature gradient 
is largely balanced by the vertical shear of the velocity component normal to the 
temperature gradient. A fluid with a small Prandtl number (CT = 0.2) becomes 
unstable to finite-amplitude disturbances at  values of the Rayleigh number 
significantly below the critical value of linear stability theory. The subsequent 
steady vorticity and temperature fields exhibit a structure which is quite different 
from that of fluids with large cr. The rotational constraint is balanced primarily 
by non-linear processes in a limited range of Taylor number (P < 103.6). For 
larger values of P the system first becomes unstable to infinitesimal oscillatory 
disturbances but a steady, finite-amplitude flow is established at supercritical 
values of R which are none the less smaller than the values that one would expect 
from linear theory. The ranges of Taylor number in which the above phenomena 
occur are different from those which were estimated on the basis of an earlier 
study (Veronis 1966 I) which made use of a minimal representation of the 
finite-amplitude velocity and temperature fields. No subcritical, finite-amplitude 
oscillatory motions were found in the present study. Comparison with some of the 
experimental features observed and reported by Rossby (1966) is also discussed 
and it is pointed out that some of the differences between theory and experiment 
may be traced to the restrictive conditions (two-dimensionality and free bound- 
aries) of the present study. 

1. Introduction and summary 
The study of the processes involved in two-dimensional BBnard convection is 

extended in this paper to include the effects of a uniform rotation of the fluid 
layer about a vertical axis. By means of an electronic computer it is possible to 
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consider flows of quite large amplitude and to investigate strong non-linear effects 
when rotation is present. 

A preliminary analysis (Veronis 1966 I, hereafter referred to as I) with a severe- 
ly truncated Fourier representation was made for a rotating convecting fluid 
bounded above and below by free surfaces. The principal result obtained is that 
finite-amplitude motions can exist at  values, R,, of the Rayleigh number, R, which 
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FIGURE 1. The minimum Rayleigh numbers at  which motion can be marginally maintained 
are plotted as functions of r2 with u = 0.2. The solid and dash-dot curves show the values 
at which linear theory predicts exchange of stability (R,) and overstability (RJ.  The dashed 
curve (R,) shows the lowest valuesof R at which finite-amplitude motions can be maintained 
according to the results from a minimal representation of the velocity and temperature fields. 
The present analysis predicts that at y2 = lo3, 10% and lo4 the minimum Rfor finite-ampli- 
tude instability will occur in the ranges designated by the small vertical lines. 

were substantially lower than the values predicted by linear stability theory. 
For this result to hold it is necessary that the Prandtl number, B, of the fluid be 
less than about J2 and the Taylor number, Y2,  lie in a restricted range. 

In  this paper we shall once again use a truncated Fourier representation 
but the number of terms is taken to be sufficiently large so that the results 
are not significantly altered by extending the representation. We follow the 
procedure used to study BBnard convection in a non-rotating fluid (Veronis 
1966 11, hereafter referred to as 11) to derive results for Rayleigh numbers 
extending an order of magnitude from the critical value. 

Figure I may serve as an aid to delimit the scope of the present study. We show 
three curves of R 'us. P for convection between free boundaries. The solid curve 
is a graph of R, 'us. P, where R, is the minimum value of the Rayleigh number 
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which can sustain infinitesimal, steady convection (Chandrasekhar 1961). 
The values of R, are independent of the Prandtl number. The dash-dot curve is a 
plot of R, vs. P, where R, is the minimum R for which infinitesimal, overstable 
(oscillatory) motions can exist whena = 0.2. Thus overstable modes, which occur 
in the range 9 2  >/ 103, can exist at values of R significantly lower than R,. 
According to linear theory, therefore, the onset of convection should take the 
form of oscillatory motions. 

The dashed curve shows the values of Rf vs. Y 2  for g = 0.2 where Rf is t,he 
minimum R at which finite-amplitude, steady motions can exist according t o  the 
analysis o f  I .  Since Rf lies below both R, and R,, it is possible forJinite-amplitude 
instability to occur provided that the system is disturbed appropriately. 

It was pointed out in I that finite-amplitude instability occurs because non- 
linear effects can balance part o f  the constraint of rotation, thereby reducing the 
inhibiting effect of rotation on convecting motions. It is clearly necessary that 
.Y2 be sufficiently large for the constraint to be effective in order that the system 
be able to reduce the effect. Also, it is necessary that non-linear effects be suffi- 
ciently large to offset the effect of the constraint in order for finite-amplitude 
instability to occur. When P is large, the required intensity o f  non-linear effects 
must be so large that they cannot be generated at  subcritical R so that, for 
sufficiently large P, we find that Rf > R,. 

These qualitative conclusions of I were verified experimentally by Rossby 
(1966), who carried out an extensive investigation o f  BBnard convection of 
several fluids in both rotating and non-rotating frames. In his experiments with 
mercury Rossby observed a definite finite-amplitude instability in a limited range 
of Taylor number. However, the motions were always transient (even when the 
systems were non-rotating). In spite of this fact, he was able to separate the types 
of instability into those related to overstable modes (periodic, oscillatory be- 
haviour) and othsr modes (aperiodic behaviour). The latter are presumably the 
ones predicted by our results since they are similar to those which Rossby ob- 
served in a non-rotating fluid at small supercritical R. In  any event the qualitative 
features o f  our preliminary study have been verified. 

It was not possible to extend the analytical methods of I to include time- 
dependent motions and part of the purpose of this numerical study was to see 
whether the subcritical oscillatory modes detected by Rossby would be exhibited 
by our numerical model. 

The mathematical problem and some of the details of the validity of the 
Fourier representation and the numerical analysis are outlined in the next three 
sections. Section 5 contains a discussion of the results when the fluid has a Prandtl 
number of 6.8 (the value of a for water at  room temperature). According to the 
analytical results of I, fluids with v > 42  should not exhibit finite-amplitude 
instability so in this sense the results with a = 6.8 can be interpreted as charac- 
teristic of fluids wit#h large Prandtl number. 

Quantitative results of heat flux (in the form of Nusselt number, Nu) vs. R 
are given in $ 5  for a = 6.8 and for ,P = 103, 104 and 105. The increasingly strong 
constraining effects of rotation are reflected in several features of the flow. Linear 
theory predicts that the critical Rayleigh number increases as F2 increases. The 
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numerical integrations show that at  low rotation rates (F2 < 103) the thermal 
field exhibits a structure similar to that of a non-rotating fluid with anvil- 
shaped plumes of warm (cold) fluid extending to the upper (lower) boundary. 
When F2 is increased to 105 the horizontal spreading of warm (cold) fluid near 
the upper (lower) boundary is inhibited. Flow does not take place down the pres- 
sure gradient but instead horizontal temperature gradients are balanced by the 
vertical shear of the zonal velocity, v. This so-called thermal wind balance (in 
the vertical vorticity equation horizontal temperature gradients are balanced 
by vertical shear, i.e. by the Coriolis terms) is characteristic of stratified fluids 
which are dominated by rotation. 

If the constraint is very effective, i.e. if the horizontal temperature gradient 
is largely balanced by the vertical shear of the zonal velocity, then the latter 
should reflect this balance through the symmetry of its horizontal distribution. 
This behaviour is exhibited in figures 5a and 5 b  which show contour lines of the 
zonal velocity which are nearly symmetric about the mid-point of a cell and in 
figure 6 which shows the horizontal structure of the vertical average, v,, of the 
zonal velocity. In  the latter figure v, is nearly antisymmetric about the  mid- 
points of each half-cell. Since v, is a measure of the intensity of the non-linear 
processes, the symmetry properties provide us with the information that the 
primary structure of the zonal velocity: v, is directly attributable to the horizontal 
structure of the temperature field. The slight skewness exhibited by the zonal 
velocity and its vertical integral reflect non-linear processes which are not a 
direct consequence of the thermal wind balance. 

To get a better picture of the type of balance which may exist when the 
thermal wind relation is not dominant we turn to the corresponding results for 
a fluid with low Prandtl number (c = 0.2). Figures l l a  and 11 b show contour 
lines of v in the vertical plane. The near-symmetry which is evident in figure 5a 
and b is no longer present and the zonal velocity is intensely concentrated in the 
lower left- and upper right-hand regions of the cell. This type of structure is 
characteristic of a fluid in which the Coriolis force is balanced primarily by non- 
linear or inertial accelerations. Figure 12 shows that v,is no longer antisymmetric 
within each half-cell, i.e. v, does not simply reflect the forced non-linear har- 
monics of a basic thermal wind balance. 

Another difference in the response of fluids with large and small Prandtl 
numbers is evident from a comparison of the results of Nu vs. R for c = 6.8 
(table 1) and u = 0.2 (tables 3-5). Qualitatively a fluid with large Prandtl 
number behaves in a manner similar to that of a non-rotating fluid; i.e. after 
the point of instability according to linear theory the heat flux increases with 
increasing R. When c is smalI, the fluid may sustain strong finite-amplitude 
motions at  subcritical values of R. 

As we mentioned earlier, this possibility of finite-amplitude instability 
for fluids with u < $2 was derived in I. The extent to which that result is 
verified by an accurate representation is seen in figure 1, where the small vertical 
lines at  F2 = lo3, 104 and lo4 show the ranges of Rayleigh number within 
which finite-amplitude steady motions could first be maintained according t o  
the present calculations. Thus the fluid will exhibit finite-amplitude instability 
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in more restricted ranges of Taylor and Rayleigh numbers than are predicted 
by the severely truncated representation of I. 

Linear theory predicts that instability will take the form of oscillatory motions 
for sufficiently small (T (Chandrasekhar 1961). In this study we find that part of 
the range of Taylor numbers for which these oscillatory modes should occur 
first is pre-empted by finite-amplitude instability (see figure l),  although this 
range too is more restricted than the one predicted in I. According to that 
study Rf < R, for T2 < 104.5. Now we find that finite-amplitude motions 
may occur first only in the ranger2  6 1036. However, in the present calculations 
it was also found tha,t even when F 2  > 103.6 finite-amplitude steady motions 
occur in the range R, < R < R,. Hence, the system is still unstable to stead? 
finite-amplitude disturbances although an instability to infinitesimal oscillatory 
motion is the first to occur. 

Two numerical integrations have shown that, where instability to infinitesimal 
oscillatory modes is the first to occur, non-linear processes alter the period of 
the oscillation somewhat although the change is small (figure 8). As the Rayleigh 
number is increased from the value R,, a skewness in the plot of N u  vs. time 
reflects the influence of non-linearities on the simple periodic (harmonic) struc- 
ture of the oscillation. 

Several of the phenomena observed by Rossby (1966) were not encountered 
in this study. These include subcritical, steady, finite-amplitude motions in 
water and subcritical oscillatory modes in mercury. The former was explained 
by Rossby as the result of the relaxation of rigid boundary conditions by Ekman 
layers which form near the boundaries of a rotating fluid confined between rigid 
plates. Thus, according to Rossby, the relaxation of the rigid boundary con- 
ditions enables the fluid to convect as if it were confined between (less con- 
straining) free boundaries. 

In none of the present calculations did subcritical oscillatory motions occur. 
This may be due to the fact that the analysis is based on a two-dimensional 
model with a single basic wave-number. Therelaxation of these two conditions plus 
the inclusion of rigid boundaries admits so many alternative possibilities to the 
fluid that the behaviour may well be quite different from what we have derived. 

In  our study with (T = 0.2 we used maximum heat flux (or maximum Nusselt 
number, which we shall denote as Numax) to determine the wave-number, a, 
which is presumably preferred in convection. The Nusselt number depends 
only mildly on a in a non-rotating fluid (for the range of R considered) and a simi- 
lar dependence is observed in the weakly rotating system (r2 < lo3). However, 
for larger values of Y2 it was found that the ‘preferred ’ wave-number is strongly 
a function of R. The boxed values in tables 4 and 5 are those giving Nu,,, as a 
function of a at each value of R shown. Thus in table 5 we note that, as R increases, 
the value of a corresponding to Nu,,, decreases from 0.95 to 0.8. Now, if the fluid 
tends to choose that horizontal scale which gives Numax, it is clear that the cell 
size must change gradually as R increases. This means that it may be difficult 
for a steady-state flow to be established since the scale of the flow is not firmly 
set and small variations in experimental conditions may be accompanied by 
adjustments in structure. 
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In his experiments with water Rossby observed that at  a fixed Rayleigh 
number a maximum amount of heat is transported at a finite value of the 
Taylor number. This behaviour is somewhat surprising in view of the constrain- 
ing effect of rotation. Rossby’s explanation of this phenomenon is again that the 
presence of rotation allows Ekman boundary layers to form which then serve to 
relax the rigid boundary conditions for the bulk of the fluid so that the fluid 
‘sees’ free boundaries. We encountered no such behaviour in these numerical 
calculations with free boundaries. 

2. Equations 
The lower boundary ( z  = 0) of the layer of fluid is maintained at temperature 

To and the temperature of the upper boundary ( z  = d )  is To-AT. We write the 
total temperature as 

Ttotal = To - AT(z/d) + T ( x ,  2, t ) ,  (2.1) 

where T ( x ,  z ,  t )  is the deviation of the temperature from the linear profile. 
Then the equations (all variations with respect to  y are assumed to vanish) 

are the two-dimensional Boussinesq equations for the conservation of momentum 

avlat + V .  vv + m x v = -p;lvp - gpf/po + vvzv, ( 2 . 2 )  

the conservation of mass aulax + awlaz = o, 
the linear equation of state for the fluctuation density 

p‘ = -POET, (2.4) 

iiTlat -w(ATld)+v.VT = K V ~ T .  (2 .5 )  

and the equation for the conservation of heat 

Here, v is the three-dimensional velocity vector with components (u, v, w) 
in the respective directions (x ,  y, z ) ;  SL is the constant rate of rotation of the entire 
system about the vertical ( 2 )  axis; g is the gravitational acceleration in the nega- 
tive x-direction; po is the density at  temperature To; a is the coefficient of 
thermal expansion; and v and K are respectively the coefficients of kinematic 
viscosity and thermometric diffusivity. In  equation (2 .5 )  the linear part of Ttotsl 
has been separated out and appears as the second term. 

We cross-differentiate the first and third equations of motion in order to 
eliminate the pressure p .  Then, defining the y-component of vorticity as 

7 = aulaz - awlax, 

arlat + V .  v7  - 2a(av/ax) = - gE(aT/ax) t vv27. 
(2.6) 

(2.7) we have 

The second equation of motion has the form 

avpt + v .  v v  + 2Qu = l’V20. 

We introduce the streamfunction, ~, through the definitions 
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so that 7 = au/az- awlax = v2$. (2.10) 
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Our system then becomes 

av aT 
= J($ ,  7) + 2Q 3 

at ax 

av a$ 
at ax 

at a ax 

- 9” - + Y V ’ ~ ,  

= J($ ,  V )  - 2Q - + v V ~ V ,  - 

- = J($ ,T) - - -  AT a$ + K V T ,  
aT 

(2.11) 

(2.12) 

(2.13) 

where J stands for the Jacobian. Furthermore, the system is non-dimensional- 
ized by 

v = ( K / d ) V ’ ,  t = (d2/K)t’, ( x , z )  = ~(z’,z’), T = ( A T ) T ’ ,  (2.14) 

where the primed quantities are non-dimensional. Then equations (2.11) to  
(2.13) become 

aqpt = J($,  7) + u q a v / a x )  - g q a T / a x )  + av27, (2.15) 

avpt = J($,  v )  - vr(a$/az) + uv2v, (2.16) 

a q a t  = J($,  T )  - a$/ax + V ~ T ,  (2.17) 

where all of the variables are now non-dimensional, the primes have been dropped 
and the following non-dimensional parameters appear: 

Prandtl number, u = Y / K ;  

Taylor number, 9 - 2  = 4Q2d4/v2; 

Rayleigh number R = ga AT d3/Kv. 
(2.18) 

The boundary conditions are based on the assumption t a t  the bounda.ries 
at x = 0, 1 are perfect conductors of heat and are flat and stress-free. Then the 
conditions are 

av 82$ 

ax ax2 
- = O ,  $ = O ,  - = O ,  T=O,  on z = O , l .  (2.19) 

3. Representation 
We have assumed two-dimensional motions with a basic horizontal wave- 

number denoted by a. Then a general spatial represention which satisfies the 
boundary conditions is 

M N  

m=l n=l 

M N  

m=O n=l 

M N  

m=l n = O  

$ = I: awn sin (mnm) sin (nnx), 

T = 2 C b,, cos (mnax)  sin (nm), 

v = C C c,,, sin (mnax) cos (nnx), 
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where the am,, b,,,, c,, are generally functions of time. This representation is 
composed of the eigenfinnctions of the linear stability problem and if M and N are 
allowed to become infinite the representation is a complete orthogonal stt. In 
our treatment we shall truncate the sums by choosing finite values of M and N 
so that the representation will be only approximate. The accuracy of the results 
will be examined in connexion with specific solutions in the following sections. 

If expressions (3.1) are substituted into equations (2.15) to (2.17) and if we 
multiply these equations respectively by sin (pnax) sin ( q m ) ,  cos (pn-ax) sin (qnx) 
and sin (pnax) cos (qnz) and integrate from x = 0 to x = l / a  and 2 = 0 to z = 1, 
we derive the following sets of ordinary, non-lins?ar, differential (in time) equa- 
tions for the amplitudes of the harmonic components: 
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X am-p,n d m,n-q 

(3.4) 

wherep and q have the same range as in (3.1) and Szj is the Kronecker delta. 
The overdot on the left-hand side of each equation denotes a time derivative. 

4. Numerical procedure 
Equations (3.2) to (3.4) must be integrated in time so that a suitable set of 

initial conditions must be given. Experience with the non-rotating system (see 11) 
showed that, when the system is unstable to supercritical disturbances only and 
when the solution is steady, the final solution is independent of the initial con- 
ditions. In  the present investigation the same procedure proved to be valid for 
those cases with CT = 6.8. Hence, since we can derive an analytical solution for 
the system truncated with M = N = 2 (see I), we have used this solution as a 
starting-point for systems with M > 2, N > 2 because convergence is achieved 
most rapidly when the initial conditions approximate the final solution. 

When u = 0.2, motions can occur for subcritical R. In  this case the initial 
conditions are important because a disturbance composed of 'infinitesimal ' 
values decays (that is what is meant by the term, subcritical). Hence, it is neces- 
sary that the initial conditions be appropriate to give rise to instability where 
the latter is possible. In  most runs it sufficed to take as initial conditions the 
analytical results obtained with M = N = 3. However, it is possible that oscil- 
latory motions can exist at values of R smaller than those for which finite-ampli- 
tude steady motions exist. To investigate this possibility at  low values of R we 
took as initial conditions the solution (either steady or oscillatory) which ex- 
isted for larger values of R. When it leads to maintained motions, this procedure 
is sufficient to prove finite-amplitude instability. When the motion decays, we 
call the system stable. It is obvious that we have not proved general stability 
by this procedure and the term 'stable' should be interpreted accordingly. 

As in II we choose a maximum number of modes, K ,  and calculate all com- 
ponents and all interactions such that M + N  < K and 0 < p = M ,  0 < q < N .  
This proce;dure allows the largest systems which consistently take into account 
all interactions up to any given order. Also, as in the earlier work we take into 
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account only those components such that m + n is even, because a few runs in- 
cluding the terms with m + n odd showed that the latter always decayed. Systems 
with K = 4, 6, 8 and 10 were treated. 

Physical information of interest to us is the value of the Nusselt number, 
Nu,  as a function of R. The Nusselt number is defined as the ratio of the vertical 
heat flux, H ,  to the conductive vertical heat flux. In  the steady state the vertical 
heat flux is independent of the vertical co-ordinate, z, and can be evaluated as 

where the angular brackets correspond to a horizontal average. Using (3.1) we 

AT AT N 
H = K - - K -  2 n-nbOn. 

can rewrite (4.1) as 

d d n=l  

Hence Nu can be written as 
Hd N 

NU = - = l--n nbOn. 
K AT n = l  

(4.3) 

For time-dependent motions H as defined by (4.1) can be interpreted only as the 
heat flux through the lower boundary since the heat flux may vary with z .  How- 
ever, we can still use Nu to describe the oscillatory behaviour, e.g. to deduce the 
period of the oscillation. 

An efficient method of integrating equations (3.2) to (3.4) is the foIlowing: 
symbolically the equations can be written as 

f = F(fh (4.4) 

where f stands for the vector making up the different variables and F ( f )  represents 
the right-hand sides of (3.2) to (3.4). Equation (4.4) is approximated by the im- 
plicit finite-difference form 

f+' = f + $AT[F(f.+') + F(f)], (4.5) 

wheref+l is the value off at t = (7 + 1)  AT and AT is a time increment. 
Because of the complicated form that F ( j )  has, it is not generally possible to 

derive an explicit solution to (4.5). Hence, we get an approximate solution by 
the following iterative procedure: 

f ; + l =  f + ATF(f), (4.6a) 

(4.68) fkt; = f + 44T[F(f) + F(fL++')], 

and let f + 1 =  fL$: when If;$\ -fL+'I < 0-OlAT. (4.7) 

When 4T is chosen optimally, the average number of iterations per time step 
is less than three. 

For those cases in which a steady state was achieved the latter was considered 
to have been established when 

I f + ' - f I  < O*OlAT (4.8) 

for each of the Fourier coefficients. This criterion yielded a Nusselt number con- 
stant to 5 significant figures. 
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The values of N u  depended on the size of the representation, i.e. on the value 
of K .  As in 11, we consider that a system is sufficiently well represented when 
successive values of K yield Nusselt numbers which differ by less than 1 %. In  
some of the runs it was not possible to achieve this degree of convergence. How- 
ever, by examining the results with different values of K it was sometimes pos- 
sible to estimate the probable error of the system with K = 10, the largest t8hat 
was treated. 

5. Results with large Prandtl number 
Water has a Prandtl number, CT, of 6-8. According to linear stability theory, 

rotating fluids with a Prandtl number larger than unity cannot support over- 
stable oscillations. Furthermore, analytical results with K = 2 (I) show that 
no subcritical finite-amplitude motions exist for the system with free bound- 
aries. We expect, therefore, that only steady finite-amplitude convection will 
occur and no maintained motions can exist for R < R,. 

= 6-8 for Taylor numbers of lo3, lo4 and 
lo5. Linear stability theory for these cases yields the following results for the 
minimum critical Rayleigh number, R,, and the associated value of the wave- 
number, a, for the first two unstable modes: 

Calculations have been made with 

9 2  R, (1st mode) a (1st mode) R, (2nd mode) 01 (2nd mode) 
103 1676.12 1.18107 12300.0 1-57727 
104 5377.14 1-81372 22158.3 2-16974 
105 2 1309.0 2.74601 66249.2 3.32517 

In  table 1 we list values of N u  at these three different Taylor numbers for 
Rayleigh numbers ranging from R, up to approximately IOR,. Values are given 
for different values of K so that one can estimate both the accuracy and the 
validity of the results. 

With F2 = lo3 the computed values of N u  are acceptable up to R = 20,000 
with iY = 8 and one can expect that K = 10 will give acceptable results for even 
larger R. Thus, these heat flux results are accurate up to about 15R,. The range 
of Rayleigh numbers for which we have acceptable results is somewhat smaller 
when 9 2  = lo4. At R = 50,000 (less than lOR,) N u  calculated with K = 10 
differs by more than 2 yo from the value calculated with K = 8. Hence, we cannot 
accept results with K = 10 much beyond R = 50,000. 

When 9 2  is increased to lo5, we find that the range of R for which the heat 
fluxes satisfy the acceptability criterion is considerably more restricted. By 
R = 100,000 (less than 5R,) the values of N u  for K = 8 and K = 10 differ by 
more than 2% and the disparity increases to more than 5% by R = 200,000 
(<  lOR,). Hence, our calculated values with K = 10 are acceptable only up to 
about R = 100,000. 

These ranges of accurate results reflect a characteristic behaviour of the rota- 
ting system. Linear stability theory yields values of the Rayleigh number for 
which the fluid becomes unstable to disturbances consisting of a single cell in 
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the vertical (1st mode), to disturbances consisting of two cells in the vertical 
(2nd mode), etc. Values for the first and second mode are listed above and we see 
that the ratio of the critical Rayleigh number of the second mode to that of the 
first decreases with increasing Taylor number. With F2 = 0 the ratio is 16. 

7 -  

6 -  
.- ,//.---- 

./. 
0 

I I I I I I I I I I I I 
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

RiRC 

FIGIJRE 2. Nuvs. RIR, for u = 6.8 and for arange of values of Fz. The crosses on the curves 
w l t h P  = lo3, lo4 and 106mark the valuesof R/R,atwhich linear theorypredicts instability 
to  the second mode. At these points Nu % 4 for all three curves. - * - * ,  Fz = lo6; 
......, y-2 = 104; -, 7 2  = 103; ---- , P = 0. 

At P = lo3 the ratio is 7.3. By P = lo5 it has dropped to 3-11. Asuvmptotically 
as F2-+ co the ratio approaches a value of 2.53. This decreasing ratio means that 
higher modes can become significant at  relatively smaller values of the Rayleigh 
number because the increased structure associated with the higher modes 
becomes important sooner. It is evident that finer horizontal structure must also 
become important and therefore the size of the representation must increase. 

In figure 2 we exhibit the data of table 1 in the form of a graph of N u  vs. RIR,. 
Included for reference is the graph for Y2 = 0 from the dat.a in 11. It will be noted 
that at  any given value of RIR, the Nusselt number increases with increasing 
T2. This behaviour is consistent with the remarks made in the preceding para- 
graph. The cross which appears on each of the curves F2 = lo3, lo4, lo5 corre- 
sponds to the value of R at which instability of the second mode occurs according 
to linear stability theory. It will be noted that the Nusselt numbers at these 
values of R cluster around the value Nu = 4. This provides evidence that the 
heat flux for BBnard convection in a rotating flui,d may be best described in term s 
of the range of Rayleigh numbers lying between the critical values of the different 
modes of linear stability theory. 

As in the non-rotating system the field of streamlines in all computed cases 
shows that the motion is dominated by a single intense cell with no boundary 
layer. A typical case is shown in figure 3. There is a slight asymmetry as in the 
case of zero rotation. 
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0 

z=L 
x=o s = I l a  

FIGURE 3. Streamlines for a typical case. The corresponding isotherms are shown in figure 4a. 
The flow is clockwise; i.e. cold fluid is convected downward and warm fluid upward. 

i 2 = 0 L-o - _ _ _ ~ -  
x=o x= l / a  

FIGURE 4a. Isotherm pattern for u = 6.8, Tz = lo3, R = 15,000, a = 1.181. 
The anvil-shaped plumes are also typical of fluids with no rotation. 

FIGURE 4b. Isotherm pattern for u = 6.8, y2 = lo6, R = 75,000, 01 = 2-746. The strong 
constraining effect of rotation inhibits the formation of anvil-shaped plumes which exist 
for lower rotation rates. 
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Although the heat flux results show a certain similarity in behaviour as the 
Taylor number is increased, the isotherm patterns reflect the effect of rotating 
much more directly. For smaller values of Fz the thermal field resembles that 
of the non-rotating case. Anvil-shaped isotherms indicate that cold fluid sinks 

n=O x=  l /a 

FIGURE 5a. Contour lines for the zonal velocity, w, associated with the isotherms of figure 
40. Strong non-linear effects give rise to  a horizontal asymmetry but the pattern does not 
deviate too much from a symmetrical structure. Values of w are to be multiplied by 55.3. 

0.8 

z=o 
x = o  x = I l a  

FIGURE 5 b. Contour lines for the zonal velocity, w, associated with the isotherms of figure 4 b. 
The larger constraint of rotation dominates the flow and the pattern is more symmetric 
than that of figure 5a. Values of w are to be multiplied by 96.4. 

and spreads out close to the bottom boundary and plumes of warm fluid spread 
close to the top boundary (figure 4a) .  When F2 = 105 the horizontal spreading 
of the isotherms is inhibited as can be seen in figure 4b .  For non-rotating or 
weakly rotating fluids the horizontal spreading of warm and cold plumes of 
fluid is uninhibited. However, strong rotation introduces a thermal wind balance 
where large horizontal temperature differences can be balanced by vertical 
shear of the zonal component of velocity. This balance becomes more and more 
pronounced as Y2 increases and is the principal reason for the inhibition of 
convection (see I). 

In figure 5a we show a pattern of contour lines for the zonal velocity, v ,  for the 
flow corresponding to the isotherm pattern of figure 4a. Flow very near R, shows 
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a zonal velocity pattern which is simply antisymmetric with respect to the middle 
line x = 8. Since the Taylor number is not very large for the case shown in figure 
4a and since non-linear effects are quite strong (because R M 9RJ, the zonal 
velocities exhibit a skewness. The zonal velocity corresponding to the isotherms 

10 

5 

$ 0  

-5 

- 10 

1 

-15 L 
FIGURE 6. Graphs of vm vs. x for the three cases noted in the diagram. Each curve is nearly 
antisymmetric in the right half-cell and left half-cell. This antisymmetry reflects the domi- 
nating role of rotation. Stronger non-linear effects destroy the symmetry as can be seen in 
figure 12. Note that the amplitudes of t i ,  are much smaller than those of v, indicating that 
the t i  fields are largely antisymmetric in z, i.e. that the flow is dominated by rotation. 
-, R = 15,000,~2 = lo3; ---- , R = 75,000, Y2 = lo5; -.-. R = 5000, T2 = lo3. 

of figure 4 b  is shown in figure 5 b  and we note that the flow shows a more pro- 
nounced horizontal symmetry with little of the skewness of the previous case. 
This feature is due to the stronger constraint imposed by the larger Taylor num- 
ber, with the horizontal temperature gradient more nearly balanced by the 
vertical shear of the zonal velocity. The amplitude of the zonal velocity is larger 
in the latter case. 

The effect of the constraint is appreciated somewhat more if one looks 
at  the vertical average of the zonal velocity (figure 6 ) ,  i.e. 

v, = vdx. s: 
The quantity v, essentially reflects the amount of zonal velocity which exists 
because of non-linearity. (At marginal stability v, vanishes.) That part of v 
which contributes to the thermal wind, i.e. to balance the horizontal tempera- 
ture gradient, has a vertical shear and does not contribute to v, (in the linear solu- 
tion we have imposed symmetry about z = g). Thus the ratio of the maximum 
amplitudes of vnL and v reflects the relative roles of non-linearity and the con- 
straint of rotation. With that comparison in mind one notes that the constraining 
effect of rotation is much stronger in the case with P = 105 than with 9 - 2  = 103 at 
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the Rayleigh numbers shown. The graphs of v, vs. x show that in each of the half 
cells v, is nearly antisymmetric. This is a characteristic property of the flows 
for larger values of g. We shall see that with u = 0.2 the flows in this range of 
Taylor number exhibit markedly different behaviour. 

z = l  

Z = 0.5 

== 0 

FIGURE 7. The horizontally averaged temperature, T,, is plotted against the vertical co- 
ordinate for the three cases cited. The strong effect of the constraint for the case 9 2  = 106 is 
reflected in the slope of T,, which is everywhere negative. In both of the cases for 9 - 2  = lo3 
the curves show a mean temperature gradient which is stable a t  mid-depth. ----, 
R = 75,000,92 = 105;  -, R= 16,000, y2 = lo3; -*-, R = 5000, r2 = lo3. 

We end the description of the dynamics of these cases for large Prandtl 

number with graphs of the horizontally averaged temperature, T, = T dx, vs. 

the vertical co-ordinate, z (figure 7). Recall that in the absence of convection 
the temperature distribution is linear in z. Hence, the deviation of T, from a 
linear profile gives the degree of distortion of the mean temperature profile by 
non-linear effects. Qualitatively, the profiles reflect the convection of warm 
fluid upward and cold fluid downward with gradients sharpened near the top and 

1:" 

9 Fluid Meoh. 31 
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bottom boundaries. With Y 2  = lo3 the mean temperature profiles resemble 
those of the non-rotating case. As R is increased a region with a stable mean 
temperature gradient appears in the middle of the layer. Such a region can 
potentially support oscillatory motions and may contribute to time-dependent 
behaviour for larger Rayleigh numbers. However, as we pointed out in 11, this 
stable gradient may be associated with the restriction to two-dimensional flow 
and the concomitant inability of the fluid to generate three-dimensional insta- 
bilities. 

Increasing the Taylor number alters the mean temperature profile by reducing 
the stable region in the middle of the fluid. Indeed, for Y 2  = lo5 and R = 75,000 
the mean temperature gradient is everywhere unstable. This feature is associated 
with the inhibition of plume formation by the strong constraint of rotation. 
Thus the convective inertia of the fluid is somewhat reduced by the rotation. 

Because of the length of time required for the time integration of the systems 
with large cr no attempt was made to study the dependence of convection on 
horizontal wave-number, a. 

Several features of BBnard convection in a rotating system with water which 
have been observed experimentally by Rossby are absent in this numerical study. 
A t  no time did our results exhibit finite-amplitude motions at SubcriticalRayleigh 
numbers, although Rossby did observe unmistakable subcritical motions. Also 
in the present study Nu at a given Rayleigh number always decreased with 
increasing rotation rate. Rossby observed that at  a given Rayleigh number 
the Nusselt number achieved a maximum value at  finite Taylor numbers. 

It seems likely that both of the foregoing features are associated with the 
rigid boundaries of the experiments. Rossby conjectured that rotation created 
Ekman layers near the boundaries and these enabled the fluid to behave some- 
what like a system with free boundaries. Thus the relaxation of rigid boundary 
effects by the rotation may more than make up for the internal constraint brought 
about by the robation. This possibility is, of course, not present in the free boun- 
dary system which we have explored. It marks one of the qualitative proper- 
ties of convection which is completely missed by a free boundary investigation. 

6. Convection in fluids with small Prandtl number 
As we noted in the introduction, fluids with cr < J2 may be able to sustain 

finite-amplitude motions a t  subcritical values of the Rayleigh number. Table 2 
shows minimum values of R and the corresponding a for which convection can be 
maintained for a fluid? with CT = 0-2. Subscripts c and o respectively refer to the 
values derived by infinitesimal perturbation theory for steady convective modes 
(exchange of stabilities) and oscillatory (overstable) modes. According to  
analytical results with K = 3, finite-amplitude steady convection can exist a t  
the values designated by Rf in the table. It should be noted that R, is less than 

t We had originally planned to study the behaviour of mercury (r = 0.025). However, 
the range of R for which finite-amplitude motions could occur extended so far below the 
critical values of linear theory that it was not possible to include a sufficient number of 
eigenmodes to get convergent results. It seems that one must attack this problem with a 
finite-difference analysis. 
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either R, or R, for Taylor numbers ranging up to just over 10). For higher rotation 
rates these analytical results predict that R, < R,; hence there should be no 
finite-amplitude, subcritical, steady motions when F2 is sufficiently large. 

log P 
2 
2.5 
3 
3.5 
4 
4.5 
5 

a, Rc a 0  

0.8256 526.3 0.7115 
- - 0.7208 
1.181 1676 0.7475 
- - 0.8143 

1.814 5377 0.9468 
- - 1.153 

2.746 21309 1.429 

Ro 
1591 
1619 
1704 
1940 
2522 
3809 
6488 

a, 
0.7183 
0.7183 
0.7183 
0.7183 
0.7193 
0.7183 
0.7183 

Rf 
749.7 
837.3 

1005 
1342 
2059 
3714 
7854 

TABLE 2. Minimum values of R and corresponding wave-number, a, a t  which motions could 
be maintained when cr = 0.2 for steady infinitesimal convection (subscript c ) ,  overstable 
infinitesimal convection (subscript 0) and finite-amplitude steady convection (subscript f) 
for a range of Taylor number. 

____ 

Because the pertinent values of R,, R, and R, occur at  different values of a 
it is necessary to include a as a separate parameter. We have used maximum 
heat flux as a criterion for selecting the preferred wave-number of the convecting 
fluid. An example of the type of study which was made is shown in table 3 where 
we list the Nusselt number for various values of a, K and R with F2 = 103. The 
numbers in parentheses heading each column give the pertinent values of K 
and a respectively. 

For a = 0-75 we list values of N u  for K = 4, 6 and 8 in order to exhibit the 
convergence properties of the representation as a function of K .  Thus up to 
R = 4000 a representation with K = 8 suffices. It is seen also that for R < 4000 
maximum heat flux occurs for a = 0.75 (values enclosed in a box). For R = 8000, 
20,000 and 30,000 the maxima (boxed numbers) occur a t  a = 0.8 although only 
for R = 8000 does the value of N u  derived with K = 10 satisfy our acceptability 
criterion (i e. differing by less than 1 yo from the value of N u  with K = 8). How- 
ever, from experience with the manner in which these systems converge with 
increasing K ,  it seems that at  R = 20,000 the value of Nu with h' = 10 very likely 
differs by less than 1 yo from the value which one would derive with K = 12. 
We show N u  a t  R = 30,000 only to compare the results derived with a = 0.8 
and a = 0.85. The actual numerical values at  R = 30,000 are probably too low 
by more than 1 %. T t  is certainly conceivable that a calculation with K = 12 
would show the maximum a t  R = 3000 to occur for a = 0.85. 

The most important information exhibited in table 3 is, of course, the fact that 
finite-amplitude steady motions first occur in the range 1100 < R < 1200. 
Thus, subcritical instabilities exist for a fluid with c = 0.2, since the minimum 
value of R according to  linear stability theory occurs for oscillatory modes with 
R, = 1704. It is important to note, however, that the minimum Rayleigh number 
at  which these motions can exist is considerably above the value of R, = 1005 
derived analytically with K = 2 (see table 2). In  none of the calculations were 
subcritical oscillatory motions found. 

Asimilar listing of N u  for T2 = 10% is given in table 4, although we now include 
9-3 
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fewer columns since there is no new information on convergence as a function of 
K .  We note that once again subcritical motions occur though the value of R a t  
which these motions first occur (1600 < R < 1700) is not as far below the value 
for R, (1940) as it is when Y2 = lo3. Also, maximum heat flux now occurs for 
a = 0.8 when R 2 1800, although it is again possible that with K = 12 we would 
find the maximum at R = 20,000 to occur for a > 0.8. 

R 
1,600 
1,700 

1,800 
2,000 
4,000 
8,000 

20,000 

( 8 ,  0.75) ( 8 ,  0.8) 
1.0 1.0 
1.0 1.769 

1.981 2.001 
2.266 2.271 
- 3.487 
- 4-675 
- 6-379 

(10,0.8) 
1.0 
1.759 

3.468 

(10,0*85) (10,O.g) 
1.0 1.0 

j1.7751 1.750 
1.988 - 
2.250 - 
3.456 - 
4.662 - 

6.572 - 

~ 

TABLE 4. Nusselt number as a function of a, K and R with Fz = 109 and u = 0.2. Heading 
each column in parentheses is the pair of values (K,a). Values of maximum Nu at each R 
are enclosed in a box. 

Table 4 also shows that maximum heat flux at R = 1700 occurs for a = 0.85. 
Hence, as R is increased from the minimum value at  which subcritical motions 
exist, the associated horizontal wave-number is first large then small then large 
again. This non-monotonic dependence of Nu,,, on a is associated with another 
feature which we noted earlier and which was discussed in I; viz. a t  sufficiently 
large F z  no subcritical motions exist. Recall also that finite-amplitude motions 
can exist at  subcritical R only because non-linear processes can overcome the con- 
straint of rotation and that the associated horizontal wave-number is always 
smaller than the value given by linear theory. Hence, large a is associated with 
large P and small R. When finite amplitude motions can just be maintained, 
the effect of increasing F2 is to increase a. Thus, the minimum value of R at 
which motions can exist is raised and the corresponding value of a is also 
increased, being more dependent on Y2. 

This dependence of Nu,,, on a for subcritical R is much more strikingly ex- 
hibited in table 5, which contains N u  as a function of a, K and R for Y2 = lo4. 
It is now seen that, in fact, finite-amplitude motions occur only for supercritical 
R( > R,) but (cf. table 2) steady motions still exist at  values far below those given 
by linear theory (R < Rc). In this sense then the system still exhibits strong finite- 
amplitude behaviour at  ' subcritical' values of R. Note that, as R goes from 3100 
to 3500 to 4000 to 5000, Nu,,, occurs at  a = 0.95, 0+9,0.85 and 0-8 respectively. 
For R 2 5000 the preferred wave-number is still a = 0.8, although again we must 
admit the possibility that a larger representation may shift Nu,,, toward larger 
values of a. 

Since the wave-number for maximum N u  changes with R, it is certainly pos- 
sible that a system with complete freedom of response would not settle down to a 
steady state at a single wave-number in the range 2522 < R 6 5000 but would 
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oscillate, perhaps irregularly, as non-linear effects would in turn dominate and be 
dominated by the rotational constraint. This is, of course, only speculation but 
the changing dependence of Nu,,, on a strongly suggests possibilities other than 
a pure steady state. 

R (8,0.8) (10,0.8) (10,0.85) (10,O.g) (10,0.05) (10, 1.0) 

2,500 1.0 1.0 1.0 1.0 1.0 1.0 
2,700 - 0 0 0 
3,000 0 0 0 0 0 0 

- - 

__ 
- 3,100 0 2.055 2.140 12.1621 2.155 

3,500 2.642 2.574 2.601 12.6081 2.599 2.577 

4,000 3.025 2.955 12.9641 2.958 - - 

~~ ~ 

~ 

~ 

___ 
5,000 - ' 5 7 7  4.472 3.476 - - __ 

- - 8,000 4.521 14.480 - 
20,000 6.341 6.513 - - - 

TABLE 5. Nusselt number as a function of a, K and R with Y2 = lo4 and (T = 0.2. Heading 
each column in parentheses is the pair of values ( K ,  a) .  The letter 0 refers to a time- 
oscillatory brhaviour. For the steady state, values of maximum N u  at each R are boxed. 

I 3000 

I I 1 1 1 I I 1 I I 

14.125 14.425 14.725 

t 

FIGURE 8. The periodic behaviour of the fluid with u = 0.2 is exhibited through the 
graphs for N u  vs. t when F2 = lo4 and a = 0.95 for the two cases R = 2700 and R = 3000. 
The periods are marked as the lengths of abscissa between the two strokes on each curve. 
h-= 10. 

In  figure 1 we show the onset of finite-amplitude instability as derived by the 
present calculations at  F2 = lo3, 108 and lo4 with r = 0.2. The small vertical 
lines delimit the ranges within which finite-amplitude steady motions could 
first be maintained. Thus, as we noted earlier, analytical results with K = 2 
predict finite-amplitude instability for Taylor numbers up t o  a value slightly 
larger than 108. But an accurate representation cuts the maximum F2 down to 
a value between log and lo4. One should keep in mind that finite-amplitude 
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instability in some sense still exists even beyond Y2 = lo4 because steady finite- 
amplitude motions occur for R < R,. However, the initial onset of instability 
will take place according to linear stability theory for overstable motions. 

Since overstable motions result when 5 2  = lo4 and 2522 < R < 3100, we 
can investigate the oscillatory nature of these motions by examining the depen- 
dence of N u  on t when the system has settled to a periodic behaviour between 
fixedlimits. Graphs of N u  vs. t are exhibited in figure 8 for R = 2700 and R = 3000 
with a = 0.95 and K = 10. It was necessary to carry the calculation to t > 13 
( t  is non-dimensionalized with respect to d / K )  when the calculation was made 
using the steady finite-amplitude solution with K = 2 as initial conditions. Since 
N u  depends on the correlation of w and T, the period exhibited by N u  is half of 
the period of either w or T when R is sufficiently close to R,. For R = 3000 there 
is some distortion of N u  vs. t from a simple sinusoidal oscillation as can be seen 
by the steeper part of the curve for increasing Nu.  However, we can still use the 
period as a measure of the half-period for to or T because the major contribution 
to the heat flux comes from the cos ( m x )  sin (m) component. According to linear 
stability theory the period for P = lo4 and = 0.2 occurs a t  R = 2532 and 
is approximately 0-558 non-dimensional units. At R = 3700 our results give a 
period of 0.590 and at R = 3000 the period is 0.650 but with some skewness in the 
curve. Hence, non-linear effects increase the period or decrease the frequency. 
This behaviour was also observed by Rossby for low values of Y2. 

Wealso observe that the heat flux for these oscillatory modes is considerably less 
than the heat fluxes which exist when steady motions are possible at subcritical 
R. Thus at  R = 3000 N u  oscillates between values of 1.0 and 1.205. At R = 3100 
where steady motions can be maintained N u  = 2.162. Such large quantitative 
differences in N u  between oscillatory and non-oscillatory motions were also 
observed experimentally by Rossby. 

Contour maps of the field variables for the steady subcritical flows which exist 
with CT = 0.3 show some features which directly reflect the strong non-linear 
character of the flow. Contour maps of @ in the (x, 2)-plane are very similar to 
those of the non-rotating system (see 11) and are not shown here. 

The isotherm patterns also show the effect of stronger non-linear behaviour. 
Figure 9a is a map of isotherms for the case a = 0.75, F2 = lo3, R = 1200, i.e. 
near the minimum value of R for which motions exist. It is seen that, even though 
there is no mushroom structure to the isotherms, warm and cold plumes of fluid 
extend quite far from the lower and upper boundaries respectively. Figure 9 b 
gives equivalent results for a = 0.85, P = lo4, R = 4000, i.e. for a value of R 
considerably larger than the minimum, and shows a mushroom-like pattern 
similar to that of figure 4a. Cold and warm plumes of fluid again extend deeper 
into the system from the upper and lower boundaries. 

Shown in figure 10 are the two graphs of the horizontally averaged tempera- 
ture field corresponding to the isotherm patterns of figures 9a and 9b. For 
R = 1200, Y2 = 103 the mean temperature deviates relatively little from the 
linear profile whereas for R = 4000, Y 2  = lo4 the profile is similar to those for 
large g. Hence, in the lower range of Rayleigh number the cause of subcritical 
finite-amplitude motions must be more strongly associated with some property 
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other than the temperature field because the latter shows little of the distortion 
generally associated with strongly non-linear convection. 

In  I and in an earlier paper (Veronis 1959) it  was shown that finite-amplitude 

z = l  

z = o L o  
x = o  x = I l a  

FIGURE 9a. The isotherms for B = 0.2, CL = 0.75, rz = lo3 and R = 1200. Motioncan just be 
maintained a t  this value of R and the temperature field shows little of the distortion charac- 
teristic of flows at larger R. Note, however, the deep penetration of hot and cold plumes from 
the lower and upper boundaries respectively. 

L 

FIGURE 9b .  Isothermsfor B = 0.2, u = 0-85, Y2 = lo4 and R = 4000. Thefluidisconvecting 
much more strongly than that in figure 9a. This behaviour is exhibited by the formation of 
anvil-shaped isotherms just as in non-rotating fluids. 

instability may occur at  subcritical Rayleigh numbers because non-linear pro- 
cesses can offset the constraining effect of rotation. The more of the constraint 
which is balanced by inertial effects, the less is available to balance the hori- 
zontal temperature gradients which occur and the fluid may therefore exhibit 
behaviour closer to that of the non-rotating system with flow down the pressure 
gradient. The constraint manifests itself principally through the zonal velocity, 
v. Figures l l a  and 11 b show how much the present zonal velocities differ from 
those obtained with a = 6-8. The nearly symmetric horizontal structure of ZI 

about the mid-point of the half cell in figures 5 a and 5 b is now completely absent 
and is replaced by a diagonal antisymmetry. For c = 6.8 the zonal velocity is 
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essentially antisymmetric about the mid-level. Such a structure is a reflexion of 
the thermal wind balance av/az oc aT/ax. The patterns of l l a  and 11 b imply 
that urn, the vertical average of the zonal velocity, has a relatively large ampli- 
tude. It was pointed out earlier than the ratio of the amplitudes of ura to v reflects 
the intensity of non-linear processes. 
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FIGURE 10. T, vs. z when u = 0.2 for the two cases shown in figures 9a and 9b.  The interior 
of the fluid shows a relatively small departure from the linear temperature gradient in the 
case with R = 1200 and 5 2  = 103. When Y 2  = 104 and R = 4000 the curve for T ,  looks 
more like that for the non-rotating fluid. -, yz = lo4, R = 4000, = 0.85; - -, F2 = lo3, 
R = 1200,a = 0.75. 

Further qualitative evidence of a strongly non-linear behaviour is exhibited 
by the graphs of urn us. x as shown in figure 12. The amplitudes of urn are compar- 
able to the corresponding amplitudes of v. Furthermore, the near antisymmetries 
which are present in figure 6 in the left and right half-cells are now absent. There 
is a more intense concentration of positive mean zonal velocity near the lateral 
boundaries of the cell and a broader region of negative zonal velocity with smaller 
amplitude in the mid-area. Both figures 11 and 12 show some of the irregularity 
of the Fourier representation. Recall that for these subcritical flows it is necessary 
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to use a large number of terms to derive a representation which is even marginally 
accurate. 

In his experimental studies with mercury Rossby has observed subcritical 
motions as we predict here. However, he has not observed steady motions in 
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FIGURE l la .  Contours of w for v = 0 . 2 , Y z  = lo3,  R = 1200. The nearly horizontal sym- 
metry characteristic of fluids with large r~ is now entirely absent and a strong shift of maxi- 
mum and minimum velocities toward the lateral boundaries has taken place. This property 
is characteristic of cases in which a finite-amplitude instability can occur. Values of tj are to  
be multiplied by 4.37. 
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FIGURE 11 
that 

. b. Contours of v for cr = 0.2, Y2 = lo4, R = 4000. The behaviour is 
of figure 11 a though more intense. Values of w are to be multiplied by 

similar to 
11.7. 

any of his experiments with mercury. Indeed, even when the fluid is not rotating, 
the observed motions are unsteady. However, one can distinguish experimentally 
between the aperiodic unsteady motions which exist when theory predicts 
steady motions and the periodic oscillatory motions corresponding t o  overstable 
modes. Rossby observes subcritical, aperiodic transient motions at  lower rota- 
tion rates. When Y 2  is increased, subcritical overstable modes occur. At suffi- 
ciently high rotation rates mercury first becomes unstable to overstable modes 
as predicted by linear theory. 

Hence, it appears again that the present study of a two-dimensional fluid with 
free boundaries misses some of the observed behaviour even at  relatively moder- 
ate Rayleigh numbers. It is conceivable (though it appears to me to be unlikely) 
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that a fluid with (T = 0.2 behaves in a fashion qualitatively different from mer- 
cury. The discrepancy is probably due to the different boundary conditions. 
However, it is not obvious that one can put forth a simple argument similar to 

l5 r 1 

-1oL 

FIGURE 13. v,vs. x for the four cases cited. Note the concentration of larger amplitudes 
toward the lateral boundaries of the cell. The symmetry properties of these fields are 
quite different from those shown in figure 6. Note too that the amplitudes of v, are compar- 
able to those of t i ;  thus inertial effects are more important than they are when u = 6.8. 
-,rz = 103, R = 1200,a = 0 . 7 5 ; - - - - , r 2  = 103,R = 4000,a = 0 . 8 ; - - - - . , r 2  = 105, 
R = 4000, a = 0.85; ......, T = lo4, R = 4000, CL = 0.85. 

the one proposed to explain the discrepancy between theory and experiment 
for water (relaxation of rigid boundary conditions because of rotation) in order 
to explain the present lack of agreement. Partly the reason for this is that several 
processes are combined when time-dependence is possible and it is difficult to 
delimit the role of each. It is very possible that the explanation may involve 
non-linear interactions of the effects of transient behaviour with the effects of 
the boundaries. 

Mrs J. Webster programmed some of the subroutines and Messrs. P. Schneck, 
C. Blomquist and A. Rosati ran the progams. Dr R. Jastron generously made 
available the computing facilities of the NASA Institute for Space Studies in 
New York. The National Science Foundation supported the research through 
grants GP. 4331 and GA. 872. I am grateful to these individuals and institu- 
tions for their help. 
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